Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 23(4): e14099, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38317404

RESUMEN

Although the two-dose mRNA vaccination regime provides protection against SARS-CoV-2, older adults have been shown to exhibit poorer vaccination responses. In addition, the role of vaccine-induced T-cell responses is not well characterised. We aim to assess the impact of age on immune responses after two doses of the BNT162b2 mRNA vaccine, focussing on antigen-specific T-cells. A prospective 3-month study was conducted on 15 young (median age 31 years, interquartile range (IQR) 25-35 years) and 14 older adults (median age 72 years, IQR 70-73 years). We assessed functional, neutralising antibody responses against SARS-CoV-2 variants using ACE-2 inhibition assays, and changes in B and T-cell subsets by high-dimensional flow cytometry. Antigen-specific T-cell responses were also quantified by intracellular cytokine staining and flow cytometry. Older adults had attenuated T-helper (Th) response to vaccination, which was associated with weaker antibody responses and decreased SARS-CoV-2 neutralisation. Antigen-specific interferon-γ (IFNγ)-secreting CD4+ T-cells to wild-type and Omicron antigens increased in young adults, which was strongly positively correlated with their neutralising antibody responses. Conversely, this relationship was negative in older adults. Hence, older adults' relative IFNγ-secreting CD4+ T cell deficiency might explain their poorer COVID-19 vaccination responses. Further exploration into the aetiology is needed and would be integral in developing novel vaccination strategies and improving infection outcomes in older adults.


Asunto(s)
COVID-19 , Interferón gamma , Adulto Joven , Humanos , Anciano , Adulto , Linfocitos T CD4-Positivos , Vacunas contra la COVID-19 , Vacuna BNT162 , Estudios Prospectivos , COVID-19/prevención & control , SARS-CoV-2 , Vacunación , Anticuerpos Neutralizantes , Anticuerpos Antivirales
2.
Sci Rep ; 13(1): 21810, 2023 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071323

RESUMEN

The scale and duration of neutralizing antibody responses targeting SARS-CoV-2 viral variants represents a critically important serological parameter that predicts protective immunity for COVID-19. In this study, we describe the development and employment of a new functional assay that measures neutralizing antibodies for SARS-CoV-2 and present longitudinal data illustrating the impact of age, sex and comorbidities on the kinetics and strength of vaccine-induced antibody responses for key variants in an Asian volunteer cohort. We also present an accurate quantitation of serological responses for SARS-CoV-2 that exploits a unique set of in-house, recombinant human monoclonal antibodies targeting the viral Spike and nucleocapsid proteins and demonstrate a reduction in neutralizing antibody titres across all groups 6 months post-vaccination. We also observe a marked reduction in the serological binding activity and neutralizing responses targeting recently newly emerged Omicron variants including XBB 1.5 and highlight a significant increase in cross-protective neutralizing antibody responses following a third dose (boost) of vaccine. These data illustrate how key virological factors such as immune escape mutations combined with host demographic factors such as age and sex of the vaccinated individual influence the strength and duration of cross-protective serological immunity for COVID-19.


Asunto(s)
COVID-19 , Vacunas , Humanos , SARS-CoV-2 , Anticuerpos ampliamente neutralizantes , COVID-19/prevención & control , Anticuerpos Neutralizantes , Empleo , Vacunación , Anticuerpos Antivirales
3.
Protein Sci ; 20(5): 849-55, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21384453

RESUMEN

Asparagine-linked glycosylation is a common and vital co- and post-translocational modification of diverse secretory and membrane proteins in eukaryotes that is catalyzed by the multiprotein complex oligosaccharyltransferase (OTase). Two isoforms of OTase are present in Saccharomyces cerevisiae, defined by the presence of either of the homologous proteins Ost3p or Ost6p, which possess different protein substrate specificities at the level of individual glycosylation sites. Here we present in vitro characterization of the polypeptide binding activity of these two subunits of the yeast enzyme, and show that the peptide-binding grooves in these proteins can transiently bind stretches of polypeptide with amino acid characteristics complementary to the characteristics of the grooves. We show that Ost6p, which has a peptide-binding groove with a strongly hydrophobic base lined by neutral and basic residues, binds peptides enriched in hydrophobic and acidic amino acids. Further, by introducing basic residues in place of the wild type neutral residues lining the peptide-binding groove of Ost3p, we engineer binding of a hydrophobic and acidic peptide. Our data supports a model of Ost3/6p function in which they transiently bind stretches of nascent polypeptide substrate to inhibit protein folding, thereby increasing glycosylation efficiency at nearby asparagine residues.


Asunto(s)
Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Asparagina/genética , Asparagina/metabolismo , Sitios de Unión/genética , Biocatálisis , Glicosilación , Hexosiltransferasas/química , Hexosiltransferasas/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Péptidos/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...